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Abstract

The Boston mechanism, present in educational, medical, and military set-
tings, is highly manipulable by sophisticated agents using knowledge about which
choices are popular. However, if agents are unaware of the relative popularity of
choices, instead holding symmetric information about others’ reports and priority
rankings, there can still be theoretical benefits to manipulating. We introduce the
quasi-sophisticated strategy as a heuristic that agents can use to decide whether
to report truthfully or reverse the ordering of two choices under symmetric in-
formation. We evaluate the benefits of following this strategy, and compare it
to the expected utility of truth-telling and of having full information about oth-
ers’ preferences. We do this using data from the Educational Studies program,
which assigns students to classes using a version of the Boston Mechanism. We
find that the quasi-sophisticated strategy performs worse than truth-telling by an
amount equivalent to a 3.4 percentage point decrease in the likelihood of enroll-
ment into ones’ first choice. This inferior performance is driven by both classes
that are under-demanded and heterogeneity in the popularity of classes. These
results indicate that in the Boston mechanism, if students lack information about
the relative popularity of classes, sophisticated agents may be best off by simply
being truthful.
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1 Background

The design of centralized market-clearing mechanisms, used to assign physicians to residency

programs, army cadets to branches, students to schools, and more, can have far-reaching

consequences for the mechanism’s participants. In recent years, economists have extensively

studied manipulable mechanisms, in which a participant can benefit by misreporting their

true preferences, and how agents who manipulate affect the assignments of all participants.

Many manipulations require information about other participants’ reports; for example, in

the Boston mechanism (Abdulkadiroğlu and Sönmez, 2003), students have an incentive to

not report their true first-choice school if they have low priority at that school and if they

expect many other students to desire that school and. However, students may not have

perfect knowledge about schools’ priority rankings or other students’ preferences. Is there

still a benefit to manipulating if a student has incomplete information?

In this paper, we describe a strategy that students can use to manipulate the Boston

mechanism if they have symmetric information about other students’ preferences and school

priorities are randomly assigned. This strategy, which we term the quasi-sophisticated strat-

egy, implies that students should reverse their first and second choice if the ratio of utility

exceeds the reciprocal of the ratio of their capacities. This strategy assumes that schools

are all overdemanded, and so cannot accommodate all students who rank it first, and is

a reasonable approximation of the strategy taken by a fully-rational agent with symmetric

information in highly oversubscribed settings.

To evaluate the performance of this strategy against both truth-telling and having full

information, we use a novel data set from the Educational Studies Program (ESP). ESP is

a student organization at the Massachusetts Institute of Technology that manages multiple

educational programs for students in grades 7-12. At these programs, students are assigned

to multiple classes using a version of the Boston mechanism modified for a many-to-many
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matching market. Using 3.36 million simulations across 28 ESP programs between 2014

and 2020, we simulate the outcomes of 16,800 hypothetical students who have preferences

over two class sections, and are choosing whether to report their preferences truthfully,

follow the quasi-sophisticated strategy with symmetric information, or be fully rational if

they have full information about others’ reports. We find that truth-telling outperforms the

quasi-sophisticated strategy by 0.036 units, an amount equivalent to increasing a students’

likelihood of enrollment in their first choice by 3.6 percentage points. This poor performance

is driven by the fact that 45.6% of class sections have enough capacity to accommodate

all students who rank it first, which does not align with the “overdemanded” assumption

made by a student following the quasi-sophisticated strategy. If we limit analysis to pairs of

overdemanded class sections, a subsample which is more suited for the quasi-sophisticated

strategy, the strategy still does no better than truth-telling in expectation, a null result

which is driven by heterogeneity in students’ reports. These results suggest that even in

highly manipulable mechanisms such as the Boston mechanism, students may face individual

incentives to be sincere in their reports if they are uncertain about the relative popularity

of different classes.

This paper has three distinct contributions to the literature. First, our theoretical model

extends the work on symmetric information as introduced by Roth and Rothblum (1999),

a paper that concludes workers who hold symmetric information and are assigned to firms

using deferred acceptance (Gale and Shapley, 1962) can only benefit by truncating their

true preferences in their reports, and cannot benefit by “reversing” the order of two firms

in their report. Ehlers (2008) extends this work to many-to-one markets for any mechanism

that satisfies four properties, including all priority mechanisms. This paper is the first to

examine strategic misreporting by an agent with symmetric information in a many-to-one

market when firms (or schools or classes) have varying capacities.1

1Theorem 3.1 in Ehlers (2008), shows that a student in a many-to-one matching market that uses the
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Second, this paper furthers research on the role of information in school choice mech-

anisms. Hastings and Weinstein (2008) examine how providing test-score results to disad-

vantaged families alters the choices that they make in a school assignment mechanism in

the Charlotte-Mecklenburg Public School District. Kapor et al. (2020) discuss strategic play

when students are misinformed about the likelihood of admission into different schools using

data from New Haven. In this paper, we show that even in a mechanism that is highly

manipulable for agents with full information, a truth-telling student with symmetric infor-

mation (and thus false beliefs about their admissions likelihood into classes), is harmed by

choosing to act quasi-strategically.

Third, this paper contributes to the literature on manipulations in the Boston mecha-

nism, as introduced by Abdulkadiroğlu and Sönmez (2003). Abdulkadiroğlu et al. (2006)

provide evidence of strategic and sophisticated behavior in the Boston mechanism using data

from Boston Public Schools, using the fact that a sophisticated student would never rank

overdemanded schools as their second (or later) choice. Pathak and Sönmez (2008) provide

theoretical results about equilibria in the Boston mechanism when some students are sophis-

ticated and some are sincere, showing that sophisticated students benefit at the expense of

sincere students. Dur et al. (2018) uses this theoretical result to estimate the benefits of

sophisticated behavior in the Wake County Public School system. In this paper, we show

that while a student with symmetric information can act strategically in theory, there is no

empirical gain to such behavior.

The rest of the paper is organized as follows. Section 2 introduces the Boston mechanism

and describes when a quasi-sophisticated agent with symmetric information will misreport

their true preferences. Section 3 discusses the Educational Studies Program and the ESP

mechanism. Section 4 details our methodology and results. Section 5 concludes.

Boston mechanism cannot benefit by exchanging the ordering of two firms when reporting her preferences.
This theorem requires an “anonymity” condition to hold, but this is not satisfied if firms vary in capacity.
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2 Theory

2.1 The Boston Mechanism

Consider the traditional school choice problem with the Boston mechanism, as introduced

by Abdulkadiroğlu and Sönmez (2003). In this environment, students seek enrollment in a

school for the upcoming school year. Each student has preferences over the set of schools

and being unassigned. Schools have a maximum capacity of students that they can admit,

and also have a strict priority ordering over the set of students.

Formally, this economy consists of:

• students I = {i1, i2, . . . , in},

• schools S = {s1, s2, . . . , sm},

• school capacities q = {qs1 , qs2 , . . . , qsm},

• school priorities RS = {Rs1 , Rs2 , . . . , Rsm} where each Rs is school s’s priority ranking

over the set of students I, a ranking that is set exogenously by a district or state, and

• student preferencesRI = {Ri1 , Ri2 , . . . , Rin}, where each Ri is the preference of student

i over the set S ∪ {i}; a student’s preference for themself represents a preference for

being unmatched.

For convenience, let Rs(k) and Ri(k) represent the kth-priority student at school s and

the school ranked kth by student i, respectively.

A matching in this economy is an assignment of students to schools, and can be repre-

sented as a function µ : I → S ∪ I that maps students to their assignments and satisfies:

• For all i ∈ I, µ(i) ∈ {i} ∪ S

• For all s ∈ S, |µ(s)−1| ≤ qs

In the Boston mechanism, a matching µ is computed using I, S, q,RS, and students’
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reported preferences R̂I =
{
R̂i1 , R̂i2 , . . . , R̂in

}
, which is not necessarily the same as students’

true preferences RI . Given the 5-tuple 〈I, S, q,RS, R̂I〉, the Boston mechanism computes a

matching using the following algorithm:

Step 1. For each school s, consider only the students who ranked it first under R̂I , in

other words, {i | R̂i(1) = s}. Among these students, assign students a seat at s one at

a time according to the priority order RS until either there are no more seats at s, or

we have assigned all students who ranked s as their first choice to s.

Step k: For each school s with seats remaining, consider all students who are still

unassigned who ranked s as their kth choice in R̂I , in other words, in other words,

{i | R̂i(k) = s}. Assign these students to s according to the priority order RS until

either there are no more seats at s, or we have assigned all students who ranked s as

their kth choice to s.

This algorithm proceeds until all students have been assigned.

2.2 Reversal Strategies in the Boston Mechanism

Much literature has focused on the manipulability of the Boston mechanism if agents are

aware of others’ preferences and schools’ priority rankings. Because of the “immediate ac-

ceptance” nature of the Boston mechanism, a student whose true first choice is A, a highly-

demanded school that they do not have priority at, is not only unlikely to be enrolled in A

if they report it first, but is also be unlikely to be assigned to any other school because they

would be considered after students that ranked other schools first. As a result, a student

may choose to misreport their true preferences, instead ranking first a less popular school at

which they have priority.
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However, students may not have access to complete information about RS and R̂I ; for

example, they may be unaware of the popularity of a new school, they may not be able

to gather information perfectly, or schools may hide their priority ranking from the public.

However, even when a student possesses very little information about others’ preferences

and schools’ priority rankings, it may still be may be advantageous to manipulate. We

demonstrate this with the following example.

Example 1. Suppose that there are 4 students, I = {i1, i2, i3, i4} and 2

schools, {s1, s2}, with capacities 1 and 2, respectively. Student i1 has util-

ity function U that is linear in expectation, with U(s1) = 1, 0 < U(s2) < 1,

and U(i1) = 0. She is unaware of other students’ preferences, and believe

that other students are equally likely to report s1 � s2 as s2 � s1, and do

so independently. She is also unaware of each school’s priority ranking, and

believes that Rs1 and Rs2 are both random orderings of I. We represent the

expected outcomes of i1 when she reports her true preferences s1 � s2, con-

ditional on other students’ preferences, and expected utilities if she reports

reversed preferences s2 � s1, in Table 1.

In Table 1, rows 1 and 4 each occur with probability 1
8

each, while rows 2

and 3 occur with probability 3
8
; as such, the expected utility of truth-telling

is 1
32

(6U(s2) + 15) while her expected utility for reporting her preferences in

reverse order is 1
32

(26U(s2) + 1). As a result, whenever U(s2) > 7
10

, it is

advantageous for her to misrepresent her preferences.

The intuition behind this result is that “no information” is still information

when viewed in the context of school capacities, and so can be used to manip-

ulate. As student i1 believes that each class will be equally popular, her more

preferred class is “risky” compared to her second choice option with higher ca-
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pacity. If her utility for receiving her less-preferred option is sufficiently high,

there is a benefit (in expectation) to misreporting her preferences.

In Example 1, the steps required to analyze all possibilities increases exponentially as

the number of schools and the length of students’ preference lists increase. As a result,

a cognitively-limited agent will be unable to fully evaluate their utilities under these two

strategies.2 Instead, suppose that an agent follows a quasi-sophisticated strategy in which she

assumes she believes that every school will fill its capacity with just first choices, and so she

will never be enrolled in her second, third, etc., choices. This allows the student to simplify

their analysis, because they can ignore the calculations needed to compute their likelihood

of enrollment in choices beyond their first one. We demonstrate the quasi-sophisticated

strategy in Example 2.

Example 2. Consider the same setup from Example 1. Student i1 has sym-

metric information about the rankings of the other 3 students and the 2

schools. She chooses whether to report her true preferences or reversed pref-

erences assuming that she is enrolled into schools beyond her first rank with

probability 0. Under these beliefs, she calculates her expected utility using the

quantities in Table 2.

Again, we weight each row by the probability of its occurrence to compute

her overall expected utility. In this case, i1 believes her utility for reporting

truthfully is 15
32

, while her utility for reversing her preferences is 13
16
U(s2). She

will then choose to misreport if and only if U(s2) >
15
26

, a cutoff about 17.6% less

than her cutoff when she was fully sophisticated. Here, the quasi-sophisticated

strategy is a reasonable (albeit not fully accurate) heuristic, that i1 can use to

evaluate when she should misreport her preferences.

2The behavior of cognitively-limited agents is discussed by Li (2017) and Troyan and Morrill (2020), who
use this to define if mechanisms are “obviously” strategy-proof and manipulable, respectively.
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To formalize this intuition of these two examples, we define “symmetric information”

in the same manner as Roth and Rothblum (1999) and Ehlers (2008). Let Rs↔s′
i be the

preference ordering that is identical to Ri but with the positions of s and s′ exchanged. Let

Rs↔s′
−i denote the preference profile obtained by exchanging of s and s′ in the preferences of

all students except i and also exchanging the priorities of school s and s′.

Suppose that student i believes that school priorities and other students’ stated prefer-

ences, R−i = RS ∪ R̂I \ {Ri}, are drawn from some distribution, and so is given by the

random vector R̃−i, termed by Roth and Rothblum (1999) as a random preference profile.

Student i may have uncertainty about others’ reports; one way to model this uncertainty

is to say that i holds {s, s′}-symmetric information about R̃−i, such that for any report

R−i that others give, Pr
(
R̃−i = R−i

)
= Pr

(
R̃−i = Rs↔s′

−i

)
. In essence, i believes it to be

equally likely other that students prefer s′ to s or s to s′ and that i is unable to distinguish

between the priorities of s and s′.3

Define the quasi-sophisticated strategy as the optimal strategy taken by an agent who

believes that each school is overenrolled in Step 1 of the Boston mechanism — using the

terminology of Abdulkadiroğlu et al. (2006), we say that this agent believes that all schools

are overdemanded. Formally, the quasi-sophisticated strategy is the strategy taken by an

agent who believes that Pr
(∣∣∣{i′ | R̂i′(1) = s, i′ 6= i

}∣∣∣ ≥ qs

)
= 1 for all schools s. This

assumption implies that the agent is either either enrolled into their first choice or unenrolled,

and that the probability of enrollment into his second, third, etc., choices is 0.

There are two ways to interpret the quasi-sophisticated strategy. First, the quasi-

sophisticated strategy is a way for an agent to evaluate potential strategies without comput-

ing all possibilities for enrollment into lower-ranked choices. While it may not always be fully

3Symmetric information does not imply that class section popularity is independent. As an example,
an agent who believes that with 50% probability, all students rank s1 � s2, and with 50% probability, all
students rank s2 � s1, and also believes that school priorities are a random ordering of I still has symmetric
information about those two schools.

13



accurate (as in Example 2), it is a simple heuristic that an agent can use to choose between

different reports. Second, if all classes are actually overdemanded, the quasi-sophisticated

strategy is identical to the strategy taken by a fully-rational. See Appendix C for an example

akin to Examples 1 and 2 where this condition is approximately true.

The following theorem describes the behavior of a quasi-sophisticated student who has

symmetric information under the Boston mechanism and believes that school priorities are

randomly chosen.

Theorem 1. Consider a school choice market where in which seats are as-

signed using the Boston mechanism. Suppose that i has {s, s′}-symmetric

information, that i believes that s and s′ are overdemanded, and that each

school’s priority ranking Rs is a random ordering of I. If i has preferences s �

s′, derives no utility from being unmatched, and follows the quasi-sophisticated

strategy, she will choose to rank s first if and only if U(s)qs ≥ U(s′)qs′ . Else,

she benefits by reporting s′ first.

Proof. Let Xs be a random variable indicating the number of students that

school s is considering in the first round (all of whom ranked s first), excluding

i. If i also ranks s first, she expects to be enrolled with probability Pr(µ(i) =

s) = E
[
min

(
qs

Xs+1
, 1
)]

because Rs is a random ordering of all students, and

so the probability of enrollment is either the number of available spots divided

by the number of people who apply for s, or 1 if the class is undersubscribed.

However, the “overdemanded” assumption implies that Pr(Xs + 1 ≥ qs) =

1 and so the class will never be undersubscribed. As such, we have that

Pr(µ(i) = s) = qs · E
[

1
Xs+1

]
, and so her expected utility from ranking s first

is qsU(s)E
[

1
Xs+1

]
. Because she follows the quasi-sophisticated strategy, we

need not consider the utility gained from being enrolled in any lower-ranked
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schools. The same logic applies to s′.

Comparing the utilities of ranking s first and of ranking s′ first, we conclude

that student i is truthful about her first choice if and only if qsU(sE
[

1
Xs+1

]
≥

qs′U(s′)E
[

1
Xs′+1

]
. As the distributions of Xs and Xs′ coincide because of

{s, s′}-symmetric information, this condition is equivalent to U(s)qs ≥ U(s′)qs′ .

Theorem 1 provides a cutoff under which a student will choose to misreport his pref-

erences under the Boston mechanism in a many-to-one matching market. However, this

theorem makes no guarantees about the magnitude of utility gained by following this strat-

egy. In particular, if schools are not actually overdemanded, the quasi-sophisticated strategy

incorrectly estimates the likelihood of enrollment into classes, which may be detrimental to

students. Further, if a student has {s, s′}-symmetric information about others’ preferences,

but the realization of others’ preferences is not {s, s′}-symmetric, a student may lose utility

in expectation by following the quasi-sophisticated strategy.

3 Empirical Setting

3.1 The Educational Studies Program

To evaluate the viability of the quasi-sophisticated strategy in a real matching market, we

use data from the MIT Educational Studies Program (ESP). ESP is a student-run organi-

zation that has managed educational events for middle and high school students since 1957.

ESP’s motto is “Teach Anything, Learn Anything”; at ESP’s programs, college students and

members of the greater MIT community teach classes to students on any topic they wish,

with class titles such as “Conceptual Quantum Mechanics”, “The Mathematics of Music”,
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“Hacking Your Memory”, “How to Figure Skate in Socks”, and “Appreciation for any Juice

which is not Ruby Red”.4 (ESP, 2021)

Each program consists of tens or hundreds of class sections scheduled across several days.

Teachers have full autonomy over every element of their section, including scheduled time,

capacity, subject material, and class style. Teachers are permitted to teach multiple sections

of the same parent class, each with the same content.5 Hundreds or thousands of students

participate in these programs, learning about program registration through email lists, school

outreach, and social networks. While a majority of students come from the greater Boston

area, some travel from further away to participate. Teachers have no control over which

students are enrolled in their class, beyond limiting their class to specific grades.

Our data spans from 2014 to 2020 and includes all ESP programs (Spring HSSP, Summer

HSSP, Spark, and Splash) which use the ESP mechanism to assign students to classes, as

described in Subsection 3.2. Our data consists of all classes in our programs of interest that

had at least one student who indicate interest, and excludes lunch “classes”, used by ESP

to provide meals to students. Summary statistics about class sections at ESP programs are

included in Table 3.

The smallest programs, as measured by student and class section count, are instances of

Spring and Summer HSSP. HSSP is a multi-weekend program where students take the same

classes each weekend. Spark, the second-largest program, is a one-weekend “learning extrav-

aganza” in March, at which middle-school students can enroll in a large variety of classes.

Splash, the largest program, follows the same format as Spark, but occurs in November and

is designed for high-school students.

While there is a large variance in number of students and classes across programs, almost

4Two of these were taught by the author.
5We use the term class section to refer to one instance of a parent class. Our focus will be on preferences

over class sections, as discussed further below. We use the terms “class section”, “section”, and “class”
interchangeably. We will only use the term “parent class” to refer to parent classes.
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every program is oversubscribed, as measured by the “supply” of student-class hours (the sum

of each class section’s capacity multiplied by its duration) divided the “demand” for student

class-hours (the number of students multiplied by the number of available timeblocks). If

this ratio is less than 1, it is impossible in theory for every student to have a full schedule

of classes throughout the entire program. If schedule and grade constraints are taken into

consideration, then a ratio larger than 1 is needed to ensure that every student has a full

schedule. The most oversubscribed programs, Spring HSSP 2016 and Summer HSSP 2015–

2019, have supply-demand ratios below 0.5, indicating that at best, every student could have

a half-filled schedule.

Formally, an ESP program has students I, class sections S, capacities q, and student

preferences RI as defined as in Subsection 2.1 for the Boston mechanism. In addition,

each program occurs over a series of ordered and non-overlapping timeblocks, given by T ={
[t1, t

′
1), [t2, t

′
2), · · · , [t|T |, t′|T |)

}
, where t1 < t2 < · · · < t|T | and [tj, t

′
j) ∩ [tk, t

′
k) = ∅ ∀ j, k.

Class sections are scheduled according to D = {Ds1 , Ds2 · · · , Dsm}, where each Di ⊂ T is

the set of timeblocks in which ci occurs. The resulting many-to-many matching problem is

given by the 6-tuple 〈I, S, q, T,D,RI〉.

3.2 The ESP Mechanism

At each program, ESP computes an assignment of students to classes. This matching enrolls

each student i in a subset of class sections S that has no schedule overlap and does not

contain two class sections belonging to the same parent class, and also so that no class

section is overenrolled. Formally, a matching µ is a correspondence µ : I → S ∪ I such that:

• For all s ∈ S, |µ(s)−1| ≤ qs

• For all i ∈ I, either µ(i) = i (unmatched), or µ(i) ⊆ S such that for all sj, sk ∈

µ(i), j 6= k, Dsj ∪Dsk = ∅ (no overlap in class times) and sj and sk do not belong to
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the same parent class.6

At ESP programs, students do not directly report a ranking over all class sections. In-

stead, for each timeblock t students can rank one class section that starts at t.7 In addition,

each parent class can be designated with a “star”, indicating interest in the class as a whole,

with no limit on the number of stars assigned.8 This star gets applied to each section of a

parent class.

The ESP Matching Mechanism, in a way similar to the Boston mechanism, computes a

matching in the environment described above, using the following steps:

Step 1. Assign each student a weight factor of 1.

Step 2. Randomize the list of class sections S such that sections which occur over more

time blocks are earlier in the ordering than shorter classes (length as defined by |Ds|).9

Step 3. For each section s in S (in order), consider only students that listed it as Rank

1 and have all timeblocks of s available (i.e., not enrolled in a conflicting class). If the

section has enough capacity to accommodate all students, then assign seats to all of

those students. Else, randomly select as many students as possible to fill the class,

choosing students with a probability proportional to their weight factor.10 For each

student enrolled in s, divide their weight factor by 1.2 for future section assignments.11

6The “parent class” condition is easily accounted for using the timeblock constraint. By inserting “in-
dicator timeblocks”, one for each parent class, after all real timeblocks, and augmenting each Ds with the
timeblock associated with the parent class of s, students will never be enrolled in two instances of the same
parent class. We mention parent classes in our setup because of the nature of the ESP mechanism, described
below.

7In the programs we study, students were actually able to rank 3 classes; however, a coding error caused
the mechanism to ignore second and third choices. This error was discovered in the course of this research,
and has since been corrected.

8A student can both star a class and rank it as their first choice.
9This step is performed to ensure a smoother distribution of students between class sections of different

length.
10To be precise, the mechanism, implemented in Python, uses numpy.random.choice.
11The nature of this “tiebreaker” helps to ensure more equitable class assignments across students, as

students who have already been enrolled in classes will be less likely to be enrolled in others.
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Step 4. Repeat steps 2 and 3, but considering students who starred each class section,

and use the weight 1.1.

This mechanism is “Boston-like”, in the sense that students are either accepted or rejected

in the round that a class section considers them. In the case where there is only one timeblock

T1, student weights become irrelevant, as students can only be enrolled in exactly one class,

and the ESP mechanism reduces exactly to the Boston mechanism with randomly chosen

school priorities. Similarly, if a student has preferences only over classes with the same

duration that occur in the same timeblocks, that student faces a problem identical to the

Boston mechanism. In general, the ESP mechanism faces similar incentives as does the

Boston mechanism; in particular, if a student believes a class to be sufficiently popular, it

may be beneficial to rank a less-preferred class first, rather than “waste” one’s ranked class

on their true first choice that is in high demand.

Consider a student i who only has preferences for two class sections s and s′ which have

the same length and start in the same timeblock. Class sections s and s′ are treated “equally”

by the lottery. If i is fully rational, her choice about whether to rank s or s′ first is dependent

on how many people she expects to be eligible for enrollment into s and s′ in Step 3 of the

above algorithm (ranked s or s′ first, not enrolled in a conflicting class) and each classes’

capacity. If i is quasi-sophisticated, then she expects s and s′ to have the same number of

students rank it first.

Note that a student who has symmetric information about others’ reports and believes

that their desired class sections are overdemanded will follow the strategy implied by Theo-

rem 1. While the weighted selection implies that Pr(µ(i) = s) 6= E
[
min

(
qs

Xs+1
, 1
)]

, as used

in the proof of Theorem 1, a near-identical proof with a minor change to the “overdemanded”

assumption (see Appendix D) holds if students are selected according to a weighting func-

tion. As a result, data from the ESP programs can be used to test the empirical benefit that
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a quasi-sophisticated strategy may have.

3.3 Preference Structure

In Table 4, we describe for each program the structure of observed student preferences and

average matchings across 100 iterations of the ESP mechanism. On average, students tend

to rank a class in most timeblocks. However, due to the Boston-like nature of the ESP

mechanism and the low supply-demand ratio across all programs, students do not tend to

be enrolled in many starred classes, particularly in Spring and Summer HSSP.

In this environment, it is plausible that students have symmetric information about all

class sections. While there is significant heterogeneity in student preferences, as shown

in Figure 1a, students have no basis on which to guess which classes are more desired.

ESP organizers never communicate any information about which classes have more or fewer

registrations to participants, before or after the lottery is run. Further, students also cannot

easily learn about which classes are popular in one program and apply that knowledge to

future programs, as the class catalog changes between every instance of ESP programs. As

a result, it is reasonable to assume that any given student has symmetric information.

Further, it is reasonable for a student to use the quasi-sophisticated strategy described

in Subsection 2.2. As the complexity of the ESP mechanism is quite large (the largest

programs have nearly one thousand class sections and hundreds of thousands of stars),

students are likely unprepared to perform the detailed calculations required to determine

the optimal strategy, and may instead use the quasi-sophisticated strategy. However, the

quasi-sophisticated strategy is likely not a good approximation of the fully-rational strategy

in the ESP lottery, as shown in Figure 1b. There is significant heterogeneity in the popularity

of sections, and only 54.4% of class sections are overdemanded, violating the assumption

made by a quasi-sophisticated student. While students may follow the quasi-sophisticated
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strategy, it will not approximate a fully rational strategy well due to the large number of

class sections that are underdemanded.

As it is plausible for a student to both follow the quasi-sophisticated strategy and to

hold symmetric information, data from ESP provide an ideal environment to test the utility

benefits of the strategy implied by Theorem 1.

4 Analysis of Strategic Behavior

4.1 Methodology

We analyze the relative benefits of truth-telling, the quasi-sophisticated strategy, and a

fully-rational strategy with perfect information about others’ preferences using the ESP

data set. For each program, we run 600 trials, each with the data from all existing students

and an additional, synthetic student. This student will have preferences only over two

class sections s1, s2 with s1 � s2, with the two class sections chosen uniformly from all

pairs of classes that happen in the same timeblock, have the same duration, and have some

overlap in their permitted grade ranges. We endow our simulated student with U(s1) = 1,

U(s2) = 0.75, and U(i) = 0. Our ratio of U(s2)/U(s1) = 0.75 is in line with the ratio used

in experimental papers about school choice mechanisms, such as Chen and Sönmez (2006)

(U(s1)/U(s2) = 0.81), Featherstone and Niederle (2009) (U(s1)/U(s2) = 0.70), and Pais

et al. (2011) (U(s1)/U(s2) = 0.60).

For this synthetic student, we calculate their expected utility of truth-telling Utruth =

EU
(
R̂i = s1 � s2

)
using 100 simulations of the ESP mechanism with true reported prefer-

ences, and their expected utility of reversing their preferences Ureverse = EU
(
R̂i = s2 � s1

)
using 100 simulations with reversed preferences. We calculate the students’ expected util-
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ity of following the quasi-sophisticated strategy as UQS = Utruth if U(s1)q1 ≥ U(s2)q2,

else Ureverse. Finally, we calculate students’ expected utility with perfect information as

UPI = max (Utruth, Ureverse), as a rational agent with complete information will always choose

the strategy which gives them higher utility in expectation.

4.2 Results

Our primary results can be found in Table 5a and Table 5b. However, the quasi-sophisticated

strategy performs worse than the truthful strategy by 0.036 units, a difference which is

statistically significant at the 5% level.12 As such, the quasi-sophisticated strategy, while

utility-improving in expectation, is detrimental to a students’ outcome in the ESP mecha-

nism.

We report the same results, grouped by program, in Table 6 and Table 7. In only 2 of the

28 programs — Spring HSSP 2016 and Summer HSSP 2018 — does the quasi-sophisticated

strategy outperform truth-telling. However, neither of these differences are significant at the

5% level, implying that there is no statistical benefit if our simulated student follows the

quasi-sophisticated strategy.

Further, an agent with full information outperforms an agent who is quasi-sophisticated

(by 0.034 units) or a truth-telling agent (by 0.070 units). This difference is also statistically

significant across all programs. This result highlights the extent to which the ESP mechanism

is manipulable in this setting; however, manipulating does require detailed information about

others’ preferences. If an agent attempts to act strategically, but only possesses symmetric

information, they cannot achieve the same level of utility as an agent who has access to

others’ reports.

12A magnitude of 0.036 units can be interpreted as an equivalent increase in the likelihood to be enrolled
in a students’ true first choice by 3.6 percentage points. Similar interpretations hold throughout this section.
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To explain the inferior performance of the quasi-sophisticated strategy when compared

to truth-telling, we refer to Figure 2, which contains histograms of enrollment into s1 and

s2 under true and reversed preferences. For 49.3% of simulated students, reporting true

preferences enrolls them into their s1 100% of the time; under reversed preferences, 49.0% of

simulated students are always enrolled into s2. As was expected from information presented

in Subsection 3.3, many class sections are under capacity. If your true first choice is under-

capacity in the first round of the ESP mechanism, it is always optimal to report truthfully,

as you are guaranteed enrollment in your first choice. In other words, the “overdemanded”

assumption made by a student following the quasi-sophisticated strategy does not match

the reality of the ESP environment. As a result, the quasi-sophisticated strategy performs

poorly because it underestimates the likelihood of enrollment into a students’ first choice,

and so underestimates the benefits of truthfulness.

Could the quasi-sophisticated strategy have more merit in a more capacity-constrained

economy? To simulate such an environment, we repeat our analysis excluding the 12,208

students from our simulations who were either always enrolled in s1 under their true prefer-

ences or always enrolled in s2 under reversed preferences; in essence, restricting our sample

to students who only have preferences for overdemanded class sections. This process leaves

4,592 simulated students; for them, the quasi-sophisticated strategy approximates in theory

the fully-rational strategy (see Section 2). We report our results for this subgroup in Table 8a

and Table 8b, and results grouped by program in Table 9 and Table 10.

Even in this sample limited to situations that suit the quasi-sophisticated strategy, it still

does no better than truth-telling. In this subgroup, the difference between Utrue and UQS is

0.002 units; while the quasi-sophisticated strategy still performs worse than the truth-telling

strategy, the difference is no longer statistically significant. Twelve of the 28 programs have

an expected utility by following the quasi-sophisticated strategy UQS than by truth-telling
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UTruth, and in only two of these programs does the quasi-sophisticated strategy outperform

the truth-telling strategy to an extent that is statistically significant at the 5% level. In all

cases, a student with full information outperforms a student using the quasi-sophisticated

strategy at the 5% level.

To explain the limited usefulness of the quasi-sophisticated strategy, we note that there

is still a significant amount of heterogeneity in the likelihood of enrollment into a class

section when ranking it first, as shown in Figure 3. Under symmetric information, a quasi-

sophisticate expects to be enrolled into each class with the same probability, as demonstrated

in the proof of Theorem 1. However, it may be the case that the realization of preferences

does not result in equal popularity for all classes. In such cases, the quasi-sophisticated

strategy misjudges the likelihood of enrollment into classes, and so empirically performs no

better than truth-telling.

5 Conclusion

If a student in an overdemanded environment holds symmetric information, there are theoret-

ical benefits to manipulation by using the quasi-sophisticated strategy. In practice, however,

these manipulations do not improve a student’s expected outcome compared to truth-telling

in the environment of the Educational Studies Program. This null result is not just driven

by sections that are not overdemanded, but is also driven by the wide heterogeneity in the

realization of other students’ preferences. In particular, a lack of information may lead stu-

dents to be honest, even under highly manipulable mechanisms. We also find that both

truth-telling and the quasi-sophisticated strategy are dominated by the strategy taken by

an agent who has full knowledge about student preferences, a result that highlights the im-

portance of information in manipulating the Boston mechanism. These results suggest that
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manipulable mechanisms become less manipulable if information about student and school

preferences are withheld.

There are many potential avenues for future work in this area. While this paper has

examined the individual incentives to truth-tell using the quasi-sophisticated strategy, we do

not examine the theoretical or empirical effects that quasi-sophisticated students may have

across all students. Further, we do not examine how a lack of information affects the dis-

tribution of assignments across students, especially as it relates to the equity of matches for

sophisticated and non-sophisticated students. While the work of economists has caused many

school districts to replace the Boston mechanism with strategy-proof alternatives, given that

the Boston mechanism is still present in many markets today, including the ESP environ-

ment, it is important that economists understand under what circumstances individuals face

incentives to strategically manipulate, and when those manipulations succeed.
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Appendices

A Tables

Table 1: Expected utility in Example 1, conditional on others’ reports

Preferences of students i2, i3, i4 E
[
U | R̂i1 = (s1 � s2)

]
E
[
U | R̂i1 = (s1 � s2)

]
3× (s1 � s2), 0× (s2 � s1)

1
4
· 1 + 3

4

(
2
3
U(s2)

)
U(s2)

2× (s1 � s2), 1× (s2 � s1)
1
3
· 1 + 2

3

(
1
2
U(s2)

)
U(s2)

1× (s1 � s2), 2× (s2 � s1)
1
2
· 1 + 1

2
(0) 2

3
U(s2) + 1

3
(0)

0× (s1 � s2), 3× (s2 � s1) 1 1
2
U(s2) + 1

2

(
1
2
· 1
)

Table 2: Expected utility in Example 2, conditional on others’ reports

Preferences of students i2, i3, i4 E
[
U | R̂i1 = (s1 � s2)

]
E
[
U | R̂i1 = (s1 � s2)

]
3× (s1 � s2), 0× (s2 � s1)

1
4
· 1 U(s2)

2× (s1 � s2), 1× (s2 � s1)
1
3
· 1 U(s2)

1× (s1 � s2), 2× (s2 � s1)
1
2
· 1 2

3
U(s2)

0× (s1 � s2), 3× (s2 � s1) 1 1
2
U(s2)
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Table 3: Summary statistics about ESP programs

Counts Capacities

Program Students Sections Classes Timeblocks Mean SD Median Student-Hours S/D Ratio

Spring HSSP 2014 455 45 43 4 28.4 27.4 24 1415 0.78

Spring HSSP 2015 566 48 48 4 28.9 27.3 25 1725 0.76

Spring HSSP 2016 588 38 37 4 28.5 30.6 21.5 1229 0.52

Spring HSSP 2017 613 39 34 6 28.7 29.8 20 2866 0.78

Spring HSSP 2018 643 33 32 6 31.0 25.2 24 2530 0.66

Spring HSSP 2019 536 36 34 6 32.9 25.2 30 2674 0.83

Spring HSSP 2020 827 45 44 6 36.6 26.7 30 3986 0.80

Summer HSSP 2014 760 41 36 4 49.8 44.3 30 2277 0.75

Summer HSSP 2015 1124 61 60 5 34.3 31.9 25 2567 0.46

Summer HSSP 2016 1021 54 45 4 28.8 19.0 24 1556 0.38

Summer HSSP 2017 983 49 44 3 29.7 20.7 25 1454 0.49

Summer HSSP 2018 1138 53 51 4 35.2 30.2 27 1863 0.41

Summer HSSP 2019 914 53 50 10 29.6 19.7 25 3981 0.44

Summer HSSP 2020 2500 128 119 10 61.2 63.1 30 17301 0.69

Splash 2014 3261 842 568 19 40.9 56.3 25 51443 0.83

Splash 2015 3012 898 588 19 43.4 71.7 25 55184 0.96

Splash 2016 2858 868 559 19 46.9 67.6 30 56477 1.04

Splash 2017 2483 681 433 19 42.5 65.4 27 41741 0.88

Splash 2018 2201 550 360 19 49.0 74.5 30 39251 0.94

Splash 2019 2187 726 474 19 41.9 69.6 25 40430 0.97

Splash 2020 1318 293 200 19 49.8 51.0 30 19825 0.79

Spark 2014 1209 311 213 13 39.9 59.3 25 15961 1.02

Spark 2015 1308 310 209 14 45.4 70.0 27 18084 0.99

Spark 2016 1566 328 204 14 38.5 44.0 29.5 15808 0.72

Spark 2017 1491 291 186 15 40.9 40.7 25 14137 0.63

Spark 2018 1324 210 138 15 60.8 93.7 30 16344 0.82

Spark 2019 1317 271 186 15 50.6 92.7 25 17921 0.91

Spark 2020 1264 256 176 15 36.5 42.9 25 12542 0.66
Notes: Table includes information about all student reports registered in the ESP Website. Statistics about class sections and capacities
include only sections for which at least one student marked interest (rank or star), and excludes sections with the category “Lunch”, a
category used by ESP to assign students to lunch blocks.
Source: Educational Studies Program data set.
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Table 4: Summary statistics about student preferences and enrollment

Average Student Preferences Average Student Enrollment

Program 1st Stars
Stars

excluding 1st
1st Stars

Stars

excluding 1st
Total

Spring HSSP 2014 2.70 5.72 3.56 1.69 1.78 0.43 2.13

Spring HSSP 2015 2.45 6.18 4.15 1.43 1.67 0.46 1.89

Spring HSSP 2016 2.42 5.29 3.38 1.18 1.26 0.33 1.51

Spring HSSP 2017 2.75 7.22 4.83 1.14 1.28 0.28 1.42

Spring HSSP 2018 2.35 6.24 4.22 0.95 1.18 0.35 1.30

Spring HSSP 2019 2.13 8.66 6.73 1.10 1.71 0.72 1.82

Spring HSSP 2020 2.75 9.05 6.65 1.27 1.51 0.39 1.67

Summer HSSP 2014 3.02 7.06 4.63 1.66 1.87 0.52 2.18

Summer HSSP 2015 2.44 7.49 5.55 1.20 1.36 0.41 1.61

Summer HSSP 2016 3.10 8.55 5.98 1.22 1.27 0.28 1.50

Summer HSSP 2017 2.48 7.96 5.88 1.09 1.28 0.35 1.45

Summer HSSP 2018 3.22 10.56 7.80 1.22 1.43 0.39 1.61

Summer HSSP 2019 3.50 12.07 8.96 1.24 1.32 0.21 1.45

Summer HSSP 2020 3.60 16.57 13.26 1.73 2.38 0.79 2.52

Splash 2014 13.00 76.86 65.38 5.16 6.84 2.30 7.46

Splash 2015 13.25 67.10 55.83 5.74 7.13 2.28 8.02

Splash 2016 12.23 70.94 60.24 5.60 7.40 2.53 8.14

Splash 2017 11.72 55.18 45.26 5.23 6.55 2.10 7.34

Splash 2018 11.71 61.57 51.55 5.46 7.17 2.49 7.95

Splash 2019 13.61 84.57 72.51 6.51 8.67 2.89 9.41

Splash 2020 10.37 40.16 31.25 5.21 6.48 2.02 7.23

Spark 2014 9.65 36.28 28.45 4.55 5.30 1.62 6.18

Spark 2015 10.19 38.31 29.86 4.68 5.45 1.58 6.26

Spark 2016 10.17 41.57 33.26 4.27 5.10 1.68 5.95

Spark 2017 11.42 49.58 39.99 4.82 5.91 1.91 6.73

Spark 2018 11.36 47.69 38.04 4.41 5.58 1.86 6.27

Spark 2019 11.77 53.17 43.12 4.70 5.74 1.75 6.46

Spark 2020 12.74 56.12 45.38 4.76 5.26 1.25 6.02

Notes: Columns under “Average Student Preferences” indicate the average number of classes that each

student ranked first, starred, and starred but excluding first choices. We distinguish between starred classes

and starred excluding first choices, as students can both star a class and rank it first. Columns under

“Average Student Enrollment” indicate the average number of classes that each student was enrolled into

which were ranked first by the student, starred by the student, or starred by the student excluding they also

ranked first, calculated using 100 simulations of the ESP Lottery.

Source: Educational Studies Program dataset, simulations performed by author.
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Table 5: Simulation results of various strategies in the ESP mechanism

(a) Average utilities.

Mean Standard Error

Utruth 0.835 0.002

UQS 0.799 0.002

UFI 0.869 0.001

N 16800

(b) p-values of comparisons.

p-value

Ha: UQS > Utruth 1.000

Ha: UFI > Utruth 0.000

Ha: UFI > UQS 0.000

Notes: Utilities calculated using 600 simulated students for each of 28 programs. Each simulated student has
preferences over a pair of class sections, the pair chosen uniformly over all pairs of class sections that occur
in the same timeblock and have the same length. p-values are one-sided paired t−tests for the alternative
hypotheses listed in the table.
Source: Educational Studies Program data set, simulations performed by author.
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Table 6: Means and standard errors of various strategies in the ESP mechanism, grouped
by program

Utruth UQS UFI

Program Mean SE Mean SE Mean SE N

Spring HSSP 2014 0.888 0.008 0.834 0.008 0.900 0.007 600

Spring HSSP 2015 0.889 0.008 0.857 0.008 0.910 0.006 600

Spring HSSP 2016 0.757 0.012 0.761 0.010 0.819 0.008 600

Spring HSSP 2017 0.805 0.011 0.788 0.010 0.857 0.008 600

Spring HSSP 2018 0.852 0.011 0.804 0.010 0.886 0.008 600

Spring HSSP 2019 0.944 0.006 0.907 0.006 0.954 0.004 600

Spring HSSP 2020 0.844 0.009 0.807 0.009 0.862 0.008 600

Summer HSSP 2014 0.781 0.011 0.752 0.010 0.817 0.009 600

Summer HSSP 2015 0.779 0.011 0.724 0.010 0.816 0.008 600

Summer HSSP 2016 0.645 0.013 0.641 0.012 0.722 0.011 600

Summer HSSP 2017 0.721 0.012 0.701 0.011 0.785 0.009 600

Summer HSSP 2018 0.656 0.012 0.662 0.011 0.718 0.010 600

Summer HSSP 2019 0.644 0.012 0.633 0.012 0.724 0.010 600

Summer HSSP 2020 0.842 0.010 0.805 0.009 0.874 0.007 600

Spark 2014 0.921 0.007 0.871 0.007 0.934 0.006 600

Spark 2015 0.893 0.008 0.844 0.007 0.914 0.006 600

Spark 2016 0.885 0.008 0.832 0.008 0.905 0.006 600

Spark 2017 0.828 0.010 0.793 0.009 0.862 0.008 600

Spark 2018 0.799 0.011 0.779 0.009 0.843 0.008 600

Spark 2019 0.856 0.009 0.817 0.008 0.892 0.007 600

Spark 2020 0.809 0.010 0.781 0.009 0.848 0.008 600

Splash 2014 0.891 0.008 0.845 0.007 0.914 0.006 600

Splash 2015 0.899 0.008 0.843 0.007 0.926 0.005 600

Splash 2016 0.938 0.006 0.872 0.006 0.950 0.004 600

Splash 2017 0.910 0.008 0.862 0.007 0.932 0.005 600

Splash 2018 0.898 0.008 0.844 0.007 0.922 0.006 600

Splash 2019 0.912 0.007 0.855 0.007 0.931 0.005 600

Splash 2020 0.901 0.007 0.848 0.007 0.916 0.005 600
Notes: Utilities calculated using 600 simulated students for each of 28 programs. Each simulated student
has preferences over a pair of class sections, the pair chosen uniformly over all pairs of class sections that
occur in the same timeblock and have the same length.
Source: Educational Studies Program data set, simulations performed by author.
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Table 7: Comparisons of various strategies in the ESP mechanism, grouped by program

Utility Differences p-values

Program UQS − Utruth UFI − Utruth UFI − UQS UQS > Utruth UFI > Utruth UFI > UQS

Spring HSSP 2014 -0.055 0.012 0.067 1 0 0

Spring HSSP 2015 -0.032 0.022 0.054 1 0 0

Spring HSSP 2016 0.004 0.062 0.058 0.270 0 0

Spring HSSP 2017 -0.009 0.054 0.063 0.980 0 0

Spring HSSP 2018 -0.047 0.034 0.081 1 0 0

Spring HSSP 2019 -0.038 0.009 0.047 1 0 0

Spring HSSP 2020 -0.037 0.018 0.055 1 0 0

Summer HSSP 2014 -0.029 0.036 0.064 1 0 0

Summer HSSP 2015 -0.055 0.037 0.091 1 0 0

Summer HSSP 2016 -0.003 0.077 0.080 0.692 0 0

Summer HSSP 2017 -0.020 0.064 0.083 0.998 0 0

Summer HSSP 2018 0.006 0.062 0.055 0.172 0 0

Summer HSSP 2019 -0.010 0.080 0.090 0.950 0 0

Summer HSSP 2020 -0.037 0.032 0.069 1 0 0

Spark 2014 -0.050 0.013 0.062 1 0 0

Spark 2015 -0.049 0.021 0.070 1 0 0

Spark 2016 -0.052 0.020 0.072 1 0 0

Spark 2017 -0.036 0.033 0.069 1 0 0

Spark 2018 -0.020 0.044 0.064 0.998 0 0

Spark 2019 -0.039 0.037 0.076 1 0 0

Spark 2020 -0.028 0.039 0.067 1 0 0

Splash 2014 -0.047 0.023 0.070 1 0 0

Splash 2015 -0.056 0.027 0.083 1 0 0

Splash 2016 -0.065 0.012 0.078 1 0 0

Splash 2017 -0.048 0.022 0.070 1 0 0

Splash 2018 -0.054 0.024 0.078 1 0 0

Splash 2019 -0.057 0.019 0.076 1 0 0

Splash 2020 -0.053 0.014 0.068 1 0 0
Notes: Utilities calculated using 600 simulated students for each of 28 programs. Each simulated student has preferences over a pair of class
sections, the pair chosen uniformly over all pairs of class sections that occur in the same timeblock and have the same length. p-values are
one-sided paired t−tests for the alternative hypotheses listed in the table.
Source: Educational Studies Program data set, simulations performed by author.
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Table 8: Simulation results of various strategies in the ESP mechanism for oversubscribed
sections

(a) Average utilities.

Mean Standard Error

Utruth 0.578 0.004

UQS 0.576 0.004

UFI 0.646 0.003

N 4592

(b) p-values of comparisons.

p-value

Ha: UQS > Utruth 0.802

Ha: UFI > Utruth 0.000

Ha: UFI > UQS 0.000

Notes: Utilities calculated using 600 simulated students for each of 28 programs, excluding 12,208
simulated students that are always enrolled in their reported first choice under either true or reversed
preferences. Each simulated student has preferences over a pair of class sections, the pair chosen uniformly
over all pairs of class sections that occur in the same timeblock and have the same length. p-values are
one-sided paired t−tests for the alternative hypotheses listed in the table.
Source: Educational Studies Program data set, simulations performed by author.

32



Table 9: Means and standard errors of various strategies in the ESP mechanism for oversub-
scribed sections, grouped by program

Utruth UQS UFI

Program Mean SE Mean SE Mean SE N

Spring HSSP 2014 0.611 0.020 0.574 0.021 0.651 0.018 118

Spring HSSP 2015 0.529 0.026 0.584 0.024 0.622 0.020 87

Spring HSSP 2016 0.520 0.018 0.562 0.015 0.633 0.012 237

Spring HSSP 2017 0.490 0.026 0.504 0.020 0.595 0.021 140

Spring HSSP 2018 0.508 0.029 0.477 0.029 0.601 0.024 121

Spring HSSP 2019 0.564 0.035 0.532 0.044 0.612 0.033 30

Spring HSSP 2020 0.537 0.018 0.549 0.017 0.593 0.015 149

Summer HSSP 2014 0.548 0.017 0.526 0.015 0.602 0.014 214

Summer HSSP 2015 0.556 0.015 0.554 0.013 0.617 0.011 235

Summer HSSP 2016 0.442 0.014 0.447 0.014 0.527 0.012 300

Summer HSSP 2017 0.465 0.015 0.443 0.015 0.522 0.011 193

Summer HSSP 2018 0.485 0.014 0.491 0.012 0.555 0.012 331

Summer HSSP 2019 0.504 0.014 0.488 0.013 0.588 0.012 341

Summer HSSP 2020 0.549 0.021 0.542 0.018 0.628 0.016 148

Spark 2014 0.688 0.028 0.703 0.024 0.731 0.023 100

Spark 2015 0.654 0.023 0.659 0.019 0.708 0.018 117

Spark 2016 0.670 0.021 0.637 0.021 0.708 0.018 131

Spark 2017 0.607 0.018 0.613 0.016 0.671 0.014 197

Spark 2018 0.555 0.020 0.573 0.018 0.626 0.017 182

Spark 2019 0.672 0.020 0.677 0.017 0.743 0.015 173

Spark 2020 0.651 0.017 0.641 0.016 0.713 0.014 250

Splash 2014 0.682 0.024 0.679 0.021 0.740 0.017 122

Splash 2015 0.720 0.024 0.702 0.021 0.781 0.017 118

Splash 2016 0.698 0.030 0.690 0.026 0.764 0.020 69

Splash 2017 0.691 0.026 0.695 0.022 0.754 0.019 103

Splash 2018 0.694 0.023 0.693 0.021 0.748 0.019 116

Splash 2019 0.730 0.023 0.719 0.018 0.780 0.017 119

Splash 2020 0.756 0.016 0.733 0.015 0.785 0.013 151
Notes: Utilities calculated using 600 simulated students for each of 28 programs, excluding 12,208
simulated students that are always enrolled in their reported first choice under either true or reversed
preferences. Each simulated student has preferences over a pair of class sections, the pair chosen uniformly
over all pairs of class sections that occur in the same timeblock and have the same length.
Source: Educational Studies Program data set, simulations performed by author.

33



Table 10: Comparisons of various strategies in the ESP mechanism for oversubscribed sections, grouped by program

Utility Differences p-values

Program UQS − Utruth UFI − Utruth UFI − UQS UQS > Utruth UFI > Utruth UFI > UQS

Spring HSSP 2014 -0.036 0.040 0.077 0.993 0 0

Spring HSSP 2015 0.056 0.093 0.037 0.001 0 0

Spring HSSP 2016 0.042 0.113 0.071 0 0 0

Spring HSSP 2017 0.014 0.105 0.091 0.276 0 0

Spring HSSP 2018 -0.031 0.093 0.124 0.949 0 0

Spring HSSP 2019 -0.032 0.048 0.080 0.892 0.004 0

Spring HSSP 2020 0.012 0.056 0.044 0.122 0 0

Summer HSSP 2014 -0.022 0.055 0.076 0.980 0 0

Summer HSSP 2015 -0.002 0.061 0.063 0.573 0 0

Summer HSSP 2016 0.005 0.084 0.079 0.274 0 0

Summer HSSP 2017 -0.021 0.057 0.079 0.979 0 0

Summer HSSP 2018 0.007 0.070 0.064 0.239 0 0

Summer HSSP 2019 -0.017 0.084 0.100 0.980 0 0

Summer HSSP 2020 -0.007 0.079 0.086 0.692 0 0

Spark 2014 0.014 0.043 0.028 0.127 0 0

Spark 2015 0.005 0.054 0.049 0.338 0 0

Spark 2016 -0.033 0.038 0.071 0.991 0 0

Spark 2017 0.006 0.065 0.058 0.282 0 0

Spark 2018 0.019 0.071 0.052 0.054 0 0

Spark 2019 0.005 0.071 0.066 0.366 0 0

Spark 2020 -0.010 0.062 0.072 0.831 0 0

Splash 2014 -0.003 0.058 0.061 0.595 0 0

Splash 2015 -0.018 0.061 0.079 0.886 0 0

Splash 2016 -0.008 0.066 0.074 0.618 0 0

Splash 2017 0.004 0.063 0.059 0.413 0 0

Splash 2018 -0.001 0.054 0.055 0.530 0 0

Splash 2019 -0.011 0.051 0.061 0.725 0 0

Splash 2020 -0.023 0.029 0.052 0.986 0 0
Notes: Utilities calculated using 600 simulated students for each of 28 programs, excluding 12,208 simulated students that are always
enrolled in their reported first choice under either true or reversed preferences. Each simulated student has preferences over a pair of class
sections, the pair chosen uniformly over all pairs of class sections that occur in the same timeblock and have the same length. p-values are
one-sided paired t−tests for the alternative hypotheses listed in the table.
Source: Educational Studies Program data set, simulations performed by author.
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B Figures

Figure 1: Histograms of class sections

(a) Histograms of first choices and class section capacities.
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(b) Histogram of the difference between number of first choices and capacity.
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Figures: Table includes information about all student reports registered in the ESP Website. Statistics
about class sections and capacities include only sections for which at least one student marked interest
(rank or star), and excludes sections with the category “Lunch”, a category used by ESP to assign students
to lunch blocks.
Source: Educational Studies Program data set.
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Figure 2: Enrollment into class sections under various reports

(a) Enrollment under true preferences
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(b) Enrollment under reversed preferences
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Notes: Utilities calculated using 600 simulated students for each of 28 programs. Each simulated student
has preferences over a pair of class sections, the pair chosen uniformly over all pairs of class sections that
occur in the same timeblock and have the same length.
Source: Educational Studies Program data set, simulations performed by author.
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Figure 3: Enrollment into class sections under various reports for oversubscribed sections

(a) Enrollment under true preferences
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(b) Enrollment under reversed preferences
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Notes: Utilities calculated using 600 simulated students for each of 28 programs, excluding 12,208
simulated students that are always enrolled in their reported first choice under either true or reversed
preferences. Each simulated student has preferences over a pair of class sections, the pair chosen uniformly
over all pairs of class sections that occur in the same timeblock and have the same length.
Source: Educational Studies Program data set, simulations performed by author.
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C Example of Quasi-Sophisticated Behavior in Larger

Markets

Example 3. Consider a school choice market with the same setup as Examples 1 and 2,

where a student i has preferences over schools s1, s2, with capacities 1 and 2, respectively,

such that U(s1) = 1 > U(s2) > U(i) = 0. However, let there be 10 students other than

i with preferences drawn uniformly from {(s1 � s2), (s2 � s1)}. If i is fully rational, he

believes his probability of enrollment in s1 and s2 under various reports , conditional on

others’ preferences, to be as follows:

Table 11: Probabilities of enrollment in s1, s2 under truth-telling and reversal strategies in
Example 3.

Others’ Preferences Truth: R̂i = (s1 � s2) Reversal: R̂i = (s2 � s1)

# of s1 � s2 # of s2 � s1 Pr(µ(i) = s1) Pr(µ(i) = s2) Pr(µ(i) = s1) Pr(µ(i) = s2)

10 0 0.091 0.182 0 1

9 1 0.100 0.100 0 1

8 2 0.111 0 0 0.667

7 3 0.125 0 0 0.500

6 4 0.143 0 0 0.400

5 5 0.167 0 0 0.333

4 6 0.200 0 0 0.286

3 7 0.250 0 0 0.250

2 8 0.333 0 0 0.222

1 9 0.500 0 0 0.200

0 10 1 0 0.091 0.182

Note that row n (starting with n = 0) occurs with probability 0.510
(
10
n

)
. As a result, a

fully-rational agent calculates their expected utility of truth-telling as 0.1817 + 0.0012U(s2)

and expected utility of reporting her preference in reverse order as 0.00008 + 0.3625U(s2).
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She will then choose to report false preferences if and only if U(s2) > 0.5027.

A quasi-sophisticated agent believes his probability of enrollment into his second choice

(i.e, columns 4 and 5) to be all 0. He calculates his expected utility of truth-telling as 0.1817

and expected utility of reporting his preferences in reverse order as 0.3625U(s2). He will

choose to report false preferences if and only if U(s2) > 0.5013.

In this example, the difference in cutoffs between a quasi-sophisticated and rational agent

differ by 0.2%, or less than 1 part in 370. As such, the quasi-sophisticated strategy is a good

approximation of a fully-rational agent.

Further, the cutoffs of both agents are very close to 0.5, the cutoff implied by Theorem 1

of U(s2) >
U(s1)qs1

qs2
= 1

2
. This is because the probability that s1 or s2 still has remaining

capacity after 1 round is very small – either s1 must receive no first choices or s2 must receive

fewer than 2 first choices, which occurs with probability 3
256
≈ 0.

D Modifying Theorem 1 for the ESP Mechanism

Suppose that student i ranks s first under the ESP mechanism. When the algorithm assigns

students to s who selected s at their first choice, there will be some subset of students

J ⊆ I with weights w = {w1, w2, · · · , wi, · · · , w|J |} who are being considered. So long

as
wj∑
w′ ≤ 1

qs
∀ j ∈ J , a condition needed so that we do not run into edge cases, the

probability that i is selected is given by qs
w′

i∑
w′ ≤ 1. Another way to write this assumption

is to renormalize w to w′ such that w′i = 1, and then let Ys =
∑
w′ − 1 be a random

variable over all possible realizations of the lottery which indicates the “effective” number of

students that i is competing against for enrollment, excluding himself; then, our condition is

equivalent to stating that P (Ys ≥ qs) = 1. This condition is in the same spirit as the existing

“overenrollment” assumption, but needed given the weighting and randomization procedure
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present in the ESP mechanism.

We prove the following:

Theorem 2. Consider a school choice market in which seats are assigned

using the ESP Mechanism. Class sections s and s′ occur during the same

timeblock and have the same duration. Suppose that i has {s, s′}-symmetric

information, i believes for each section s that Ys, as defined above, satisfies

P (Ys ≥ qs) = 1, and that i believes that each school’s priority ranking RS is

a random ordering of I.

If i has preferences s � s′, derives no utility from being unmatched, and

follows the quasi-sophisticated strategy, she will choose to rank s1 first if and

only if U(s)qs ≥ U(s′)qs′ ; else, she benefits by reporting s′ first.

Proof. The probability of enrollment in s when ranking it first is s is Pr(µ(i) =

s) = E
[
min

(
qs

Ys+1
, 1
)]

. Symmetric information implies that the distributions

of Ys and Ys′ coincide, and the proof proceeds the same way as the proof of

Theorem 1.
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